河南郑州登封市 2024 年高三适应性调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是定义域为的偶函数,且在单调递增,,则( )A.B.C.D.2.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为( )A.B.C.D.3.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位4.设 x、y、z 是空间中不同的直线或平面,对下列四种情形:① x、y、z 均为直线;② x、y 是直线,z 是平面;③ z 是直线,x、y 是平面;④ x、y、z 均为平面.其中使“且”为真命题的是( )A.③④B.①③C.②③D.①②5.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )A.B.C.D.6.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( )A.B.C.D.7.已知复数是纯虚数,其中是实数,则等于( )A.B.C.D.8.已知点 P 在椭圆 τ:=1(a>b>0)上,点 P 在第一象限,点 P 关于原点 O 的对称点为 A,点 P 关于 x 轴的对称点为 Q,设,直线 AD 与椭圆 τ 的另一个交点为 B,若 PA⊥PB,则椭圆 τ 的离心率 e=( )A.B.C.D.9.欧拉公式为,( 虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,双曲线的左,右焦点分别是直线与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为( )A.B.C.D.11.复数( 为虚数单位),则等于( )A.3B.C.2D.12.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为( )附:若,则,.A.0.6826B.0.8413C.0.8185D.0.9544二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13.在中,为定长,,若的面积的最大值为,则边的长为____________.14.如图,在三棱锥 A﹣BCD 中,点 E 在 BD 上,EA=EB=EC=ED,BDCD,△ACD 为正三角形,点 M,N分别在 AE,CD 上运动(不含端点),且 AM=CN,则当四面体 C﹣EMN 的体积取得最大值时,三棱锥 A﹣BCD的外接球的表面积为_____.15.函数的最小正周期为________;若函数在区间上单调递增,则的最大值为________.16.已知,如果函数有三个零点,则实数的取值范围是____________三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。17.(12 分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线 的极坐标方程为,曲线与直线 其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.18.(12 分)十八大以来,党中央提出要在 2020 年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准.提高了各项报销的比例,其中门诊报销比例如下:表 1:新农合门诊报销比例医院类别村卫生室镇卫生院二甲医院三甲医院门诊报销比例60%40%30%20%根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下:表 2:李村一个结算年度门诊就...