浙江省91高中联盟2023-2024学年高三第二次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数z=,则z=()A.B.C.D.2.已知函数,若对任意,都有成立,则实数的取值范围是()A.B.C.D.3.过抛物线的焦点且与的对称轴垂直的直线与交于,两点,,为的准线上的一点,则的面积为()B.2A.1C.4D.84.在中,,,,则边上的高为()A.B.2C.D.5.函数的图象大致是()A.B.C.D.6.某程序框图如图所示,若输出的,则判断框内为()A.B.C.D.7.已知函数有两个不同的极值点,,若不等式有解,则的取值范围是()A.B.C.D.8.已知数列满足,(),则数列的通项公式()A.B.C.D.9.已知平面向量满足,且,则所夹的锐角为()A.B.C.D.010.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96B.84C.120D.36011.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.B.6C.D.12.函数(且)的图象可能为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.袋中装有两个红球、三个白球,四个黄球,从中任取四个球,则其中三种颜色的球均有的概率为________.14.在中,已知,,是边的垂直平分线上的一点,则__________.15.在中,角,,的对边长分别为,,,满足,,则的面积为__.16.已知全集,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.(1)求证:平面;所成的角的正弦值.(2)求直线与平面18.(12分)已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.(ⅰ)求面积最大值;(ⅱ)证明:直线与斜率之积为定值.19.(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;采用促销没有采用促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价(单位:元)和日销量(单位:件)的一组数据后决定选择作为回归模型进行拟合.具体数据如下表,表中的:①根据上表数据计算的值;②已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附①:附②:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.20.(12分)已知函数..(1)讨论函数单调性;(2)当时,求证:.的极值;21.(12分)已知函数⑴当时,求函数⑵若存在与函数,的图象都相切的直线,求实数的取值范围.22.(10分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z===...