浙江省之江教育评价联盟2024届高考适应性考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数()的最小值为0,则()A.B.C.D.2.已知x,,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.在等差数列中,若,则()A.8B.12C.14D.104.若,则的虚部是()A.B.C.D.个球,在取出的球中,黑球放回,白球则涂黑后5.盒中有6个小球,其中4个白球,2个黑球,从中任取放回,此时盒中黑球的个数,则()A.,B.,C.,D.,6.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是A.B.C.D.7.已知是定义在上的奇函数,当时,,则()D.A.B.2C.38.设,满足,则的取值范围是()A.B.C.D.,的图象与直线9.已知函数的两个相邻交点的距离等于,则的一条对称轴是()A.B.C.D.10.已知平面,,直线满足,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件11.已知函数则函数的图象的对称轴方程为()A.B.C.D.12.数列满足:,则数列前项的和为A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在区间(-∞,1)上递增,则实数a的取值范围是____14.设数列为等差数列,其前项和为,已知,,若对任意都有成立,则的值为__________.15.在中,内角所对的边分别为,若,的面积为,则_______,_______.16.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.18.(12分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.19.(12分)在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。(1)写出直线l的普通方程和曲线C的直角坐标方程:(2)若成等比数列,求a的值。20.(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;;.)21.(12分)已知函数.(1...