浙江省嘉兴一中2023-2024学年高三六校第一次联考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个几何体的三视图如图所示,则该几何体的表面积为()A.B.C.D.2.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则FA﹣FB的值等于()A.B.8C.D.43.已知函数,则()A.函数在上单调递增B.函数在上单调递减C.函数图像关于对称D.函数图像关于对称4.若集合,,则()A.B.C.D.的渐近线相同,则双曲线的标准方程为()5.已知双曲线的一个焦点为,且与双曲线A.B.C.D.6.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足()A.B.C.D.7.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立B.当时,该命题成立D.当时,该命题成立C.当时,该命题不成立8.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间B.3阶区间C.4阶区间D.5阶区间()9.已知函数为奇函数,且,则D.3A.2B.5C.110.某几何体的三视图如图所示,则此几何体的体积为()A.B.1C.D.11.正项等比数列中,,且与的等差中项为4,则的公比是()A.1B.2C.D.12.已知是定义在上的奇函数,且当时,.若,则的解集是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数为__________.14.给出下列等式:,,,…请从中归纳出第个等式:______.15.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)16.根据如图的算法,输出的结果是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:(),四点,,,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.18.(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布.(Ⅰ)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率;(Ⅱ)记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据(Ⅰ)中的结果,求参数和的值(精确到0.1);(Ⅲ)在(Ⅱ)的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的,分布列及数学期望(分布列写出计算表达式即可).注:若,则,.19.(12分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.20.(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.21.(12分)如图,四棱锥中,底面,,点在线段上,且.(1)求证:平面;(2)若,,,,求二面角的正弦值.22.(10分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求和的直角坐标方程;(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.【详解】由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,如图,故其表面积为,故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对...