浙江省杭州市五校联考2023-2024学年高三下学期一模考试数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.使得的展开式中含有常数项的最小的n为()A.B.C.D.,则()2.已知复数满足,且D.C.则全集A.3B.,D.3.已知集合C.则下列结论正确的是()A.B.4.设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为()A.B.C.5D.65.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为()A.B.C.D.6.定义在上的函数满足,则()A.-1B.0C.1D.27.已知,则的大小关系为(),,A.B.C.D.8.已知复数,则的虚部是()A.B.C.D.19.已知实数,满足约束条件,则目标函数的最小值为A.B.C.D.10.是虚数单位,复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限11.若各项均为正数的等比数列满足,则公比()A.1B.2C.3D.412.已知是函数的极大值点,则的取值范围是A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,则______.14.已知,,则与的夹角为.15.已知,则=___________,_____________________________16.在中,,,,则绕所在直线旋转一周所形成的几何体的表面积为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.18.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.19.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.20.(12分)如图,为等腰直角三角形,,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE.(1)证明:;的余弦值.(2)若,求二面角21.(12分)在中,角的对边分别为,且,.(1)求的值;(2)若求的面积.22.(10分)中的内角,,的对边分别是,,,若,.(1)求;(2)若,点为边上一点,且,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用.2、C【解析】设,则,利用和求得,即可.【详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.3、D【解析】化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.4、A【解析】根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:...