电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

浙江省湖州市菱湖中学2023-2024学年高三第三次测评数学试卷含解析.doc

浙江省湖州市菱湖中学2023-2024学年高三第三次测评数学试卷含解析.doc_第1页
1/20
浙江省湖州市菱湖中学2023-2024学年高三第三次测评数学试卷含解析.doc_第2页
2/20
浙江省湖州市菱湖中学2023-2024学年高三第三次测评数学试卷含解析.doc_第3页
3/20
浙江省湖州市菱湖中学2023-2024学年高三第三次测评数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,若,则实数的取值范围为()A.B.C.D.2.已知函数,,若对任意的总有恒成立,记的最小值为,则最大值为()A.1B.C.D.3.已知复数满足(其中为的共轭复数),则的值为()A.1B.2C.D.4.已知复数,则的虚部是()A.B.C.D.15.已知复数z满足(i为虚数单位),则z的虚部为()A.B.C.1D.6.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A.B.C.2D.7.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为()A.B.C.D.8.在中,,,,点,分别在线段,上,且,,则().A.B.C.4D.9C.()9.设全集U=R,集合,则D.A.B.10.已知双曲线()的渐近线方程为,则()A.B.C.D.11.已知正项等比数列的前项和为,且,则公比的值为()A.B.或C.D.12.“且”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式在时恒成立,则实数的取值范围是_____14.函数f(x)=x2﹣xlnx的图象在x=1处的切线方程为_____.15.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______.16.如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有____种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.(Ⅰ)求证:;(Ⅱ)求证:四边形是平行四边形;(Ⅲ)若,试判断二面角的大小能否为?说明理由.18.(12分)选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集非空,求的取值范围.19.(12分)已知,,且.(1)求的最小值;(2)证明:.20.(12分)如图1,四边形是边长为2的菱形,,为的中点,以为折痕将折起到的位置,使得平面平面,如图2.(1)证明:平面平面;(2)求点到平面的距离.21.(12分)已知抛物线的焦点为,点,点为抛物线上的动点.(1)若的最小值为,求实数的值;(2)设线段的中点为,其中为坐标原点,若,求的面积.22.(10分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.2、C【解析】对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【详解】总有恒成立对任意的,对恒成立,令,可得令,得当,当,,故令,得当时,当,当时,故选:C.【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.3、D【解析】按照复数的运算法则先求出...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

浙江省湖州市菱湖中学2023-2024学年高三第三次测评数学试卷含解析.doc

您可能关注的文档

确认删除?
0.0324s