浙江省百校2023-2024学年高考冲刺押题(最后一卷)数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的虚部是()A.B.C.D.2.下列不等式正确的是()A.B.C.D.3.已知圆与抛物线的准线相切,则的值为()A.1B.2C.D.44.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是()A.3B.4C.5D.65.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96B.84C.120D.360D.6.在复平面内,复数对应的点的坐标为()A.B.C.7.已知函数.若存在实数,且,使得,则实数a的取值范围为()A.B.C.D.8.年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A.B.C.D.9.已知函数,则()A.1B.2C.3D.410.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是()A.B.C.D.11.如果,那么下列不等式成立的是()A.B.C.D.12.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5B.11C.20D.25的解集为____________.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则不等式14.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,则.其中正确命题的序号为______.15.某校初三年级共有名女生,为了了解初三女生分钟“仰卧起坐”项目训练情况,统计了所有女生分钟“仰卧起坐”测试数据(单位:个),并绘制了如下频率分布直方图,则分钟至少能做到个仰卧起坐的初三女生有_____________个.16.设函数,则满足的的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知六面体如图所示,平面,,,,,,是棱上的点,且满足.(1)求证:直线平面;(2)求二面角的正弦值.18.(12分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原点为极点,轴的正.半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.19.(12分)选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集非空,求的取值范围.20.(12分)已知点为圆:上的动点,为坐标原点,过作直线的垂线(当、重合时,直线约定为轴),垂足为,以为极点,轴的正半轴为极轴建立极坐标系.(1)求点的轨迹的极坐标方程;(2)直线的极坐标方程为,连接并延长交于,求的最大值.21.(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.22.(10分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点.⑴求椭圆的标准方程;⑵若时,,求实数;⑶试问的值是否与的大小无关,并证明你的结论.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】因为,所以的虚部是,故选C.2、D,利用排除法,即可求解.【解析】,根据【详解】由可排除A、B、C选项,又由,所以.故选D.【点睛】本题主要考查了三角函...