海南省临高县二中2023-2024学年高三(最后冲刺)数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的定义域为,且,当时,.若,则函数在上的最大值为()C.3D.8A.4B.62.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位3.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好;③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“,”的充要条件;其中真命题的个数为()A.4B.3C.2D.14.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为()A.B.C.D.5.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.6.已知函数A.的一条切线为,则的最小值为()B.C.D.7.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为()A.B.6C.D.中,8.设命题函数在上递增,命题在,下列为真命题的是(C.D.)A.B.9.函数图像可能是()A.B.C.D.10.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()A.6B.8C.10D.1211.已知(为实数),则关于的不等式为定义在上的奇函数,若当时,的解集是()A.B.C.D.12.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且B.,且C.,且D.,且二、填空题:本题共4小题,每小题5分,共20分。13.下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为______.14.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数__________.15.中,角的对边分别为,且成等差数列,若,,则的面积为__________.16.已知正实数满足,则的最小值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,,记的最大值与最小值分别为M,m,求的值.的左、右焦点分别为,椭圆上两动点使得四边形为18.(12分)椭圆平行四边形,且平行四边形的周长和最大面积分别为8和.(1)求椭圆的标准方程;(2)设直线与椭圆的另一交点为,当点在以线段为直径的圆上时,求直线的方程.19.(12分)正项数列的前n项和Sn满足:(1)求数列的通项公式;(2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N,都有Tn<.20.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.21.(12分)如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)...