海南省天一大联考 2024 届高三二诊模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若不等式对于一切恒成立,则的最小值是 ( )A.0B.C.D.2.在三棱锥中,,,,,点到底面的距离为2,则三棱锥外接球的表面积为( )A.B.C.D.3.将 4 名大学生分配到 3 个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( )A.18 种B.36 种C.54 种D.72 种4.已知,,分别为内角,,的对边,,,的面积为,则()A.B.4C.5D.5.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为( )A.B.C.D.6.若,则下列不等式不能成立的是( )A.B.C.D.7.已知各项都为正的等差数列中,,若,,成等比数列,则( )A.B.C.D.8.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为 12 厘米,底面半径为 3 厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )A.B.C.D.9.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前 2020 项和为( )A.B.C.D.10.若,则的虚部是A.3B.C.D.11.已知直三棱柱中,,,,则异面直线与所成的角的正弦值为( ).A.B.C.D.12.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则( )A.B.C.1D.二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13.已知多项式满足,则_________,__________.14.如图,直三棱柱中,,,,P 是的中点,则三棱锥的体积为________.15.某校开展“我身边的榜样”评选活动,现对 3 名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这 3 名候选人的得票数(不考虑是否有效)分别为总票数的 88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________.“我身边的榜样”评选选票候选人符号注:1.同意画“○”,不同意画“×”.2.每张选票“○”的个数不超过 2 时才为有效票.甲乙丙16.三棱柱中, ,侧棱底面,且三棱柱的侧面积为.若该三棱柱的顶点都在同一个球的表面上,则球的表面积的最小值为_____.三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。17.(12 分)如图,三棱锥中,(1)证明:面面;(2)求二面角的余弦值.18.(12 分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,,求的面积最小值.19.(12 分)设函数().(1)讨论函数的单调性;(2)若关于 x 的方程有唯一的实数解,求 a 的取值范围.20.(12 分)已知数列中,a1=1,其前 n 项和为,且满足.(1)求数列的通项公式;(2)记,若数列为递增数列,求 λ 的取值范围.21.(12 分)已知直线过椭圆的右焦点,且交椭圆于 A,B 两点,线段 AB 的中点是,(1)求椭圆的方程;(2)过原点的直线 l 与线段 AB 相交(不含端点)且交椭圆于 C,D 两点,求四边形面积的最大值.22.(10 分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为 A,且,求 a 的取值范围.参考答案一、选择题:本题共 12 小题...