海南省海口四中2024年高考数学押题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则()A.,B.,C.,D.,2.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A.B.C.D.3.已知正项等比数列中,存在两项,使得,,则的最小值是()A.B.C.D.4.等差数列中,,,则数列前6项和为()A.18B.24C.36D.725.若复数在复平面内对应的点在第二象限,则实数的取值范围是()A.B.C.D.6.设等比数列的前项和为,则“”是“”的()A.充分不必要()C.充要B.必要不充分7.复数D.既不充分也不必要的实部与虚部相等,其中为虚部单位,则实数A.3B.C.D.8.已知直线与圆有公共点,则的最大值为()A.4B.C.D.9.若,满足约束条件,则的取值范围为()A.B.C.D.”是“”()10.设点,,不共线,则“A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件11.函数(其中是自然对数的底数)的大致图像为()A.B.C.D.12.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A.B.C.D.8,则二、填空题:本题共4小题,每小题5分,共20分。=____,=___.13.若14.实数,满足约束条件,则的最大值为__________.15.两光滑的曲线相切,那么它们在公共点处的切线方向相同.如图所示,一列圆(an>0,rn>0,n=1,2…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=___,rn=______16.设向量,,且,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.18.(12分)已知函数.(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围.19.(12分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需60时间超过4天总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87920.(12分)在中,.(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围.21.(12分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余弦值.22.(10分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个...