湖北十堰市2023-2024学年高三下学期联合考试数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A.B.C.D.2.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A.B.C.D.3.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若PQ=OF,则C的离心率为A.B.C.2D.4.下列图形中,不是三棱柱展开图的是()A.B.C.D.5.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1B.2C.3D.46.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A.B.C.D.7.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()A.,B.,C.,D.,8.观察下列各式:,,,,,,,,,根据以上规律,则()A.B.C.D.9.设集合,,则()A.B.C.D.10.已知定义在上的函数,若函数为偶函数,且对任意,都有,若,则实数的取值范围是()A.B.C.D.11.已知复数满足,则=()A.B.C.D.12.若,则下列不等式不能成立的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。为的实轴长的2倍,13.若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_________.14.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,则双曲线的离心率为.15.已知函数,若的最小值为,则实数的取值范围是_________16.在中,角A,B,C的对边分别为a,b,c,且,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,求的面积的值(或最大值).已知的内角,,所对的边分别为,,,三边,,与面积满足关系式:,且,求的面积的值(或最大值).18.(12分)已知函数,,若存在实数使成立,求实数的取值范围.19.(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.20.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.21.(12分)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.(1)求证:平面平面;(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.22.(10分)随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9年来的纸质广告收入如下表所示:根据这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.243;根据后5年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.984.(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测.从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?附:相关性检验的临界值表:(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心...