湖北省宜昌市一中、恩施高中2023-2024学年高三第三次测评数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知a>b>0,c>1,则下列各式成立的是()A.sina>sinbB.ca>cbC.ac<bcD.2.已知随机变量的分布列是则()A.B.C.D.3.若复数是纯虚数,则()A.3B.5C.D.4.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=AB﹣2MN,则()A.λ<﹣16B.λ=﹣16C.﹣12<λ<0D.λ=﹣125.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于()A.B.C.D.6.偶函数关于点对称,当时,,求()A.B.C.D.函数只有1个零点,则的取值范围是()7.若函数A.B.C.D.满足8.已知定义在R上的偶函数,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为()A.2B.4C.5D.69.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A.B.C.D.10.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A.B.C.D.11.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形12.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A.B.2C.D.3,则的取值范围为______.二、填空题:本题共4小题,每小题5分,共20分。13.设平面向量与的夹角为,且,14.设常数,如果的二项展开式中项的系数为-80,那么______.15.已知,复数且(为虚数单位),则__________,_________.16.已知以x±2y=0为渐近线的双曲线经过点,则该双曲线的标准方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.18.(12分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.19.(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;表示抽到“很幸福”的人(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记数,求的分布列及.20.(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.21.(12分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).22.(10分)某企业现有A.B两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.图1:A设备生产的样...