湖北省荆门市2024届高考数学三模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A.B.C.lD.12.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A.B.C.D.3.复数的虚部为()A.—1B.—3C.1D.24.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.12种B.24种C.36种D.48种5.已知函数的定义域为,且,当时,.若,则函数在上的最大值为()A.46.在B.6C.3D.8中,已知,,,为线段上的一点,且,则的最小值为()A.B.C.D.的距离为,则7.设抛物线上一点到轴的距离为,到直线的最小值为()A.2B.C.D.3,点、分别是圆、圆上的动点,8.已知圆:,圆:为轴上的动点,则的最大值是()C.7A.B.9D.9.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3B.6C.9D.12,10.对两个变量进行回归分析,给出如下一组样本数据:,,,下列函数模型中拟合较好的是()A.B.C.D.11.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同12.已知复数z,则复数z的虚部为()A.B.C.iD.i二、填空题:本题共4小题,每小题5分,共20分。13.已知x,y>0,且,则x+y的最小值为_____.14.若函数与函数,在公共点处有共同的切线,则实数的值为______.15.已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,,则双曲线的离心率的取值范围为_____.16.已知向量,,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.18.(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.19.(12分)已知等差数列的前n项和为,等比数列的前n项和为,且,,.(1)求数列与的通项公式;(2)求数列的前n项和.20.(12分)已知函数的最小正周期是,且当时,取得最大值.(1)求的解析式;(2)作出在上的图象(要列表).21.(12分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上.求椭圆C的方程;若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角.22.(10分)如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.2、D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.3、B【解析】对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查...