湖北省随州市曾都区随州一中2024届高三六校第一次联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,则a的取值范围为()A.B.C.D.D.2.设,,,则()D.30A.3.B.C.A.54.二项式的展开式中的系数为()B.10C.20展开式中,项的系数为()A.B.C.D.5.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A.B.C.D.6.复数的共轭复数在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限7.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入A.B.D.C.的焦点为,,且上点满足8.已知双曲线:,,,则双曲线的离心率为A.B.C.D.59.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3B.4C.5D.610.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是()A.B.C.D.11.将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为()A.B.C.D.12.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、、、为顶点的四面体的外接球的体积为________.14.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则⋅_____,△ABC的面积为_____.15.展开式中的系数为_______________.16.展开式的第5项的系数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.18.(12分)已知函数.(1)证明:函数在上存在唯一的零点;(2)若函数在区间上的最小值为1,求的值.19.(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.20.(12分)设函数.(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围.21.(12分)在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形.(1)求椭圆C的方程;(2)假设直线l:与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围.22.(10分)在三角形中,角,,的对边分别为,,,若.(Ⅰ)求角;(Ⅱ)若,,求.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.【详解】由得,在时,是增函数,是增函数,是增函数,∴是增函数,∴由得,解得.故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.2、A【解析】先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.3、C【解析】由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.,因为展开式的通项为,所以【详解】由已知,展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式...