湖南省岳阳市第一中学2023-2024学年高三考前热身数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为()A.300,B.300,C.60,D.60,2.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.4C.D.53.设,,,则()A.B.C.D.4.已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为()A.B.C.D.5.某几何体的三视图如图所示,则该几何体的最长棱的长为()A.B.C.D.6.若函数在时取得极值,则()A.B.C.D.7.函数的定义域为,集合,则()A.B.C.D.8.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A.B.C.D.9.已知双曲线),其右焦点F的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为()A.B.2C.D.10.的展开式中,项的系数为()A.-23B.17C.20D.6311.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()A.B.C.D.12.已知函数的部分图象如图所示,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,复数且(为虚数单位),则__________,_________.14.已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_______.,AD为∠BAC的角平分线,且,若AB=2,则BC=_______.15.在△ABC中,∠BAC=.16.已知非零向量的夹角为,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,所对的边分别为,,,且求的值;设的平分线与边交于点,已知,,求的值.18.(12分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.19.(12分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次数为.(1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.20.(12分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1(百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.21.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线...