湖南省株洲市醴陵两校2023-2024学年高三第三次测评数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是()A.B.C.D.2.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是A.B.C.D.3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A.B.C.D.4.已知是的共轭复数,则()A.B.C.D.5.已知集合,则等于()A.B.C.D.6.已知,,分别是三个内角,,的对边,,则()A.B.C.D.7.已知集合,,,则的子集共有()A.个B.个C.个D.个8.已知为锐角,且,则等于()A.B.C.D.9.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为()A.B.C.D.10.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,,的概率为()A.B.C.D.11.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形12.执行下面的程序框图,如果输入,,则计算机输出的数是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.14.已知函数,则________;满足的的取值范围为________.15.己知双曲线的左、右焦点分别为,直线是双曲线过第一、三象限的渐近线,记直线的倾斜角为,直线,,垂足为,若在双曲线上,则双曲线的离心率为_______16.数列的前项和为,则数列的前项和_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.18.(12分)在数列中,,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值19.(12分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.20.(12分)已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.(1)求椭圆的方程;(2)若圆上存在两点,,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.21.(12分)已知函数.(1)求函数的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若满足,,,求.22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.,求点到线段中点(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即...