湖南省洞口县第二中学2023-2024学年高考数学考前最后一卷预测卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为()A.B.C.或D.或2.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8B.7C.6D.53.已知若(1-ai)(3+2i)为纯虚数,则a的值为()A.B.C.D.4.设命题:,,则为A.,B.,C.,D.,5.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是()A.48B.60C.72D.1206.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A.B.C.1D.7.已知的部分图象如图所示,则的表达式是()A.B.C.D.8.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于()D.A.B.C.9.若x,y满足约束条件则z=的取值范围为()A.[]B.[,3]C.[,2]D.[,2]10.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A.B.C.D.11.若a>b>0,0<c<1,则A.logac<logbcB.logca<logcbC.ac<bcD.ca>cbD.12.曲线在点处的切线方程为(),且A.B.C.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,对任意,有,则______.上,过点P作圆C:的一条切线,切点为T.若14.在平面直角坐标系中,点P在直线,则的长是______.15.已知双曲线的左、右焦点和点为某个等腰三角形的三个顶点,则双曲线C的离心率为________.16.的展开式中,的系数是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,,,证明:(1);(2).18.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.19.(12分)记函数的最小值为.(1)求的值;(2)若正数,,满足,证明:.20.(12分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);所成角的正弦值.若不是,请说明理由;(2)求直线与平面21.(12分)如图,在四棱锥中,底面为直角梯形,,,,,,点、分别为,的中点,且平面平面.(1)求证:平面.(2)若,求直线与平面所成角的正弦值.22.(10分)如图所示,直角梯形中,,,,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.2、B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B...