湖南省邵阳市双清区十一中2023-2024学年高三下第一次测试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=()A.B.C.D.2.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①②B.①③C.②③D.①②③,则称为函数3.对于函数,若满足的一对“线性对称点”.若实数与和与为函数的两对“线性对称点”,则的最大值为()A.B.C.D.,则4.下列四个结论中正确的个数是(1)对于命题使得都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.15.已知B.2C.3D.4,,,则的最小值为()A.B.C.D.6.设,则()A.10B.11C.12D.13)(其中,为无理数)7.下列命题为真命题的个数是(①;②;③.A.0B.1C.2D.3的值为()8.执行如图所示的程序框图,则输出A.B.C.D.9.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则B.若,,则C.若,,则D.若,,则10.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是A.B.C.D.11.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A.B.C.D.12.已知与分别为函数与函数的图象上一点,则线段的最小值为()A.B.C.D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为_________.14.已知函数在处的切线与直线平行,则为________.15.已知函数对于都有,且周期为2,当时,,则________________________.16.已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,,若线段的垂直平分线与轴交点的横坐标为,则的值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.18.(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.19.(12分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次数为.(1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.20.(12分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).21.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.22.(10分)如图,在正四棱锥中,,点、分别在线段、上,.(1)若,求证:⊥;(2)若二面角的大小为,求线段的长.参考答案一、选择题:本题共12小题,每...