湖南省邵阳市双清区第十一中学2024届高三适应性调研考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数图像可能是()A.B.C.D.2.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A.B.C.D.3.已知直线和平面,若,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.不充分不必要4.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1B.C.D.5.已知正四面体外接球的体积为,则这个四面体的表面积为()A.B.C.D.6.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A.B.C.D.7.已知复数,若,则的值为()A.1B.C.D.8.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是()A.B.C.D.9.若,则“”是“的展开式中项的系数为90”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件10.若,满足约束条件,则的最大值是()A.B.C.13D.11.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A.B.复数的共轭复数是C.D.12.设复数满足,在复平面内对应的点的坐标为则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则不等式的解集为____________.14.已知等比数列的前项和为,,且,则__________.15.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____.16.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.18.(12分)已知函数,其中.(1)讨论函数的零点个数;(2)求证:.19.(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,点G为CD中点,平面EAD⊥平面ABCD.(1)证明:BD⊥EG;(2)若三棱锥,求菱形ABCD的边长.20.(12分)设函数,直线与函数图象相邻两交点的距离为.(Ⅰ)求的值;(Ⅱ)在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.21.(12分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请恒成立.说明理由.,,不等式22.(10分)已知(1)求证:(2)求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D时,可分析函数值为正,即可判断选项.【解析】先判断函数的奇偶性可排除选项A,C,当【详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.2、A【解析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,,,当时,,则当时,,单减,当时,,单增;当时,,,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题3、B【解析】由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,,当时,存在...