湖南省长沙市2024年高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的大致图象是A.B.C.D.2.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A.B.4C.D.163.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A.B.C.D.4.已知函数,则下列判断错误的是()A.的最小正周期为B.的值域为C.的图象关于直线对称D.的图象关于点对称5.若θ是第二象限角且sinθ=,则=A.B.C.D.6.设,满足,则的取值范围是()A.B.C.D.7.已知的部分图象如图所示,则的表达式是()A.B.C.D.8.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A.B.C.D.9.已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为A.B.C.D.10.函数在上的大致图象是()A.B.C.D.11.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是()A.B.C.12.函数D.在的图像大致为A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,已知是的中点,且,点满足,则的取值范围是_______.14.在的二项展开式中,x的系数为________.(用数值作答)15.某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值__________.16.已知实数,且由的最大值是_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知均为正实数,函数的最小值为.证明:(1);(2).18.(12分)等差数列的前项和为,已知,.(1)求数列的通项公式;(2)设数列{}的前项和为,求使成立的的最小值.19.(12分)已知直线的参数方程:(为参数)和圆的极坐标方程:(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)已知点,直线与圆相交于、两点,求的值.20.(12分)如图1,与是处在同-个平面内的两个全等的直角三角形,,,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;底面,求六面体的体积的最大值.(3)若平面21.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且.(Ⅰ)求证:面;(Ⅱ)求证:平面平面;(Ⅲ)求该几何体的体积.22.(10分)已知数列,满足.(1)求数列,的通项公式;(2)分别求数列,的前项和,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.2、D【解析】根据复数乘方公式:,直接求解即可.【详解】...