湖南省长沙市湖南师大附中2023-2024学年高三下学期第五次调研考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A.B.C.D.2.已知集合A={yy},B={xy=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,)B.(﹣∞,0)∪[,+∞)C.(0,)D.(﹣∞,0]∪[,+∞)3.已知,,若,则实数的值是()A.-1B.7C.1D.1或74.若非零实数、满足,则下列式子一定正确的是()A.B.C.D.5.函数的值域为()A.B.C.D.6.已知a,b∈R,,则()A.b=3aB.b=6aC.b=9aD.b=12a7.若双曲线至多有一个交点,则双曲线的离心率的取值范围是()的一条渐近线与圆A.D.B.C.8.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像9.已知函数,则下列判断错误的是()A.的最小正周期为B.的值域为C.的图象关于直线对称D.的图象关于点对称10.曲线在点处的切线方程为()A.B.C.D.11.设复数满足,在复平面内对应的点为,则不可能为()A.B.C.D.12.已知向量,,若,则()A.B.C.-8D.8二、填空题:本题共4小题,每小题5分,共20分。13.设平面向量与的夹角为,且,,则的取值范围为______.14.已知等差数列的前n项和为Sn,若,则____.15.已知函数,若,则___________.16.三对父子去参加亲子活动,坐在如图所示的6个位置上,有且仅有一对父子是相邻而坐的坐法有________种(比如:B与D、B与C是相邻的,A与D、C与D是不相邻的).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。的右焦点为17.(12分)在平面直角坐标系中,椭圆:(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点.⑴求椭圆的标准方程;⑵若时,,求实数;⑶试问的值是否与的大小无关,并证明你的结论.18.(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.19.(12分)已知函数.(1)讨论的单调性并指出相应单调区间;(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.20.(12分)如图,在中,,,点在线段上.(1)若,求的长;(2)若,,求的面积.21.(12分)设函数,.(Ⅰ)讨论的单调性;(Ⅱ)时,若,,求证:.22.(10分)已知函数,其中,为自然对数的底数.(1)当时,证明:对;(2)若函数在上存在极值,求实数的取值范围。参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.2、D【解析】求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合A={yy}={yy≥0}=[0,+∞);B={xy=lg(x﹣2x2)}={xx﹣2x2>0}={x0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.3、C【解析】根据平面向量数量积的坐标运算,化简即可求得的值.【详解】由平面向...