甘肃省合水县一中2024届高三(最后冲刺)数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,下列结论不正确的是()A.的图像关于点中心对称B.既是奇函数,又是周期函数C.的图像关于直线对称D.的最大值是2.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A.B.C.D.3.已知函数,若关于的不等式恰有1个整数解,则实数的最大值D.8为()B.3C.5A.24.二项式展开式中,项的系数为()A.B.C.D.交于(坐标原点),两点,直线:5.已知直线:()与抛物线:与抛物线交于,两点.若,则实数的值为()A.B.C.D.6.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()上A.至少有一个样本点落在回归直线B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有的解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关7.若(是虚数单位),则的值为()A.3B.5C.D.8.若均为任意实数,且,则的最小值为()A.B.C.D.9.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A.B.C.D.10.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A.B.C.D.11.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是().A.B.C.D.12.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)14.已知数列满足对任意,若,则数列的通项公式________.15.函数的图象在处的切线方程为__________.16.3张奖券分别标有特等奖、一等奖和二等奖.甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱台中,侧面与侧面是全等的梯形,若,且.(Ⅰ)若,,证明:∥平面;(Ⅱ)若二面角为,求平面与平面所成的锐二面角的余弦值.18.(12分)在中,角A,B,C的对边分别为a,b,c,且.(1)求B;的面积为,周长为8,求b.(2)若19.(12分)已知函数,(Ⅰ)当时,证明;(Ⅱ)已知点,点,设函数,当时,试判断的零点个数.20.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的前n项和为.21.(12分)已知实数x,y,z满足,证明:.22.(10分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果.【详解】解:,正确;,为奇函数,周期函数,正确;,正确;D:,令,则,,,,则时,或时,即在上单调递增,在和上单调递减;且,,,故D错误.故选:.【点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.2、C【解析】由题得,,又,联立解方程组即可得,,进而得出双曲线方程.【详...