甘肃省天水地区2024届高三第二次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A.B.C.D.2.函数的图象可能是下列哪一个?()A.B.C.D.3.设M是边BC上任意一点,N为AM的中点,若,则的值为()A.1B.C.D.4.在等腰直角三角形中,,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为().A.B.C.D.5.在中,为边上的中线,为的中点,且,,则()A.B.C.D.6.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为()A.B.C.D.7.如图,在棱长为4的正方体中,E,F,G分别为棱AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为()A.B.C.D.8.的展开式中的系数是()A.160B.240C.280D.3209.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为()A.B.2C.4D.10.已知函数A.是上的偶函数,是的奇函数,且,则的值为()11.若函数B.C.D.满足,且,则的最小值是()A.B.C.D.12.若时,,则的取值范围为()A.B.C.D.上运动,则下列四个命题中:①三棱锥二、填空题:本题共4小题,每小题5分,共20分。13.在正方体中,已知点在直线的体积不变;②;③当为中点时,二面角的余弦值为;④若正方体的棱长为2,则的最小值为;其中说法正确的是____________(写出所有说法正确的编号)14.某四棱锥的三视图如图所示,那么此四棱锥的体积为______.15.如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有____种.16.曲线y=e-5x+2在点(0,3)处的切线方程为________.,AF=1,M是线段EF三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.的焦点为,点,点为抛物线上的动点.18.(12分)已知抛物线(1)若的最小值为,求实数的值;(2)设线段的中点为,其中为坐标原点,若,求的面积.19.(12分)2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:,,,,(单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.20.(12分)已知椭圆C:()的左、右焦点分别为,,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.21.(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.22.(10分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所...