甘肃省天水市秦安县2024年高考考前模拟数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数满足,则的图像可能是A.B.C.D.2.已知函数,不等式对恒成立,则的取值范围为()A.B.C.D.3.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8B.7C.6D.44.已知函数,,,,则,,的大小关系为()A.B.C.D.5.已知复数满足(其中为的共轭复数),则的值为()A.1B.2C.D.6.已知集合,,,则的子集共有()A.个D.个7.已知椭圆B.个C.个,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A.B.C.D.8.复数(为虚数单位),则等于()A.3B.C.2D.9.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2B.3C.4D.10.已知集合,B={y∈Ny=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3}B.{﹣1,0,1,2}C.{0,1,2}D.{x﹣1≤x≤2}11.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A.B.C.D.12.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36B.21C.12D.6二、填空题:本题共4小题,每小题5分,共20分。13.函数的值域为_________.14.设满足约束条件且的最小值为7,则=_________.15.已知数列递增的等比数列,若,,则______.16.函数的定义域为,其图象如图所示.函数是定义域为的奇函数,满足,且当时,.给出下列三个结论:①;②函数在内有且仅有个零点;③不等式的解集为.其中,正确结论的序号是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别为,其中,.过且斜率为(1)求角的值;(2)若,,为边上的任意一点,求的最小值.18.(12分)如图,设点为椭圆的右焦点,圆的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.19.(12分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.中,底面为矩形,侧面底面,为棱的中点,20.(12分)如图,在四棱锥为棱上任意一点,且不与点、点重合..(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.21.(12分)已知函数f(x)=x-1+x-2.若不等式a+b+a-b≥af(x)(a≠0,a、b∈R)恒成立,求实数x的取值范围.22.(10分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为.(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质.由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B.2、C【解析】确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式结合函数的单调性可得,即,,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不...