甘肃省平凉市静宁县一中2023-2024学年高考压轴卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,集合,则A.B.或C.D.2.已知集合A={xx<1},B={x},则A.B.C.D.3.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()A.B.C.D.5.已知定义在上函数的图象关于原点对称,且,若,则()A.0B.1C.673D.6746.已知中,角、所对的边分别是,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充分必要条件7.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是()A.B.C.D.8.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A.B.C.D.9.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③B.①②C.①③D.②③10.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A.B.C.D.11.抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是()A.B.C.D.12.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正项等比数列中,,则__________.14.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.15.已知数列的各项均为正数,满足,.,若是等比数列,数列的通项公式_______.16.若复数z满足,其中i是虚数单位,则z的模是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.18.(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.19.(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.20.(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.21.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.22.(10分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在...