甘肃省武威市第二中学2024届高三下学期联考数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则函数在区间内单调递增的概率是()A.B.C.D.2.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()A.B.C.D.3.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()A.B.C.-D.-4.已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为()A.3B.2C.D.5.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.6.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A.B.C.D.7.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1B.2C.3D.0,复数:满足8.复数的共轭复数记作,已知复数对应复平面上的点.则等于()A.B.C.D.9.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A.B.C.D.10.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有B.若是等比数列,则一定有C.若不是等差数列,则一定有D.若不是等比数列,则一定有11.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为()A.B.C.D.12.已知数列对任意的有成立,若,则等于()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.设变量,,满足约束条件,则目标函数的最小值是______.14.已知等边三角形的边长为1.,点、分别为线段、上的动点,则15.在取值的集合为__________.,,则中,角,,的对边长分别为,,,满足的面积为__.16.已知实数满足,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.18.(12分)如图,底面ABCD是边长为2的菱形,,平面ABCD,,,BE与平面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.19.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.20.(12分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,,点为射线与曲线的交点,求点的极径.21.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;同侧的两个动点(异于、),且满足,试讨论直线与(2)设、是椭圆上位于直线直线斜率之间的关系,并求证直线的斜率为定值.22.(10分)已知椭圆:的离心率为,右焦点为抛物线的焦点.(1)求椭圆的标准方程;(2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.2、B【解析】因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧因为时针旋转一周为12小时,转过的角度为度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.3、A【解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,...