甘肃省金昌市第二中学2024年高三六校第一次联考数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知非零向量,满足,,则与的夹角为()A.B.C.D.2.已知,满足约束条件,则的最大值为A.B.C.D.3.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若PQ=OF,则C的离心率为A.B.C.2D.4.已知x,y满足不等式组,则点所在区域的面积是()A.1B.2C.D.5.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6}B.{1,5,6}C.{2,3,4}D.{1,2,3,5,6}6.已知函数,则的最小值为()A.B.C.D.7.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为()A.B.C.D.8.已知函数,若则()A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b)D.f(c)<f(b)<f(a)9.如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则()A.1B.C.2D.310.过抛物线的焦点且与的对称轴垂直的直线与交于,两点,,为的准线上的一点,则的面积为()B.2A.1C.4D.811.已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为A.B.C.D.12.下列不等式正确的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列为等比数列,,则_____.14.已知的展开式中含有的项的系数是,则展开式中各项系数和为______.15.设满足约束条件,则的取值范围是______.16.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。,椭圆E:()17.(12分)如图,在平面直角坐标系中,已知圆C:的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;时,求直线l的方程.(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当18.(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;.如果不存在,请说明理由.19.(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:20.(12分)已知矩阵,求矩阵的特征值及其相应的特征向量.21.(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.22.(10分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【详解】根据平面向量数量积的垂直关系可得,,,所以,即,由平面向量数量积定义可得所以,而,即与的夹角为.故选:B【点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.2、D【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.【点睛】本题主要考查线性规划的应用,利用目标函数的...