盘锦市重点中学2024届高考冲刺模拟数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前项和为,若,,则数列的公差为()A.B.C.D.2.一个几何体的三视图如图所示,则该几何体的表面积为()A.B.C.D.843.若x,y满足约束条件的取值范围是A.[0,6]B.[0,4]C.[6,D.[4,4.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A.B.C.D.5.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则()A.P1•P2=B.P1=P2=C.P1+P2=D.P1<P26.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是()A.①③B.②④C.①②③D.②③④7.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是()A.甲得分的平均数比乙大B.甲得分的极差比乙大,则实数的值为()C.甲得分的方差比乙小D.甲得分的中位数和乙相等8.已知平面向量满足与的夹角为,且A.B.C.D.9.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对10.()A.B.C.D.11.已知等差数列中,,则()A.20B.18C.16D.1412.已知函数,则的最小值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列为等比数列,,则_____.14.记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.15.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.16.已知,记,则的展开式中各项系数和为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.18.(12分)设函数(其中),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.19.(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.(1)求证:四边形ACC1A1为矩形;(2)求二面角E-B1C-A1的平面角的余弦值.20.(12分)已知函数.(1)若,求的取值范围;(2)若,对,不等式恒成立,求的取值范围.21.(12分)已知凸边形的面积为1,边长,,其内部一点到边的距离分别为.求证:.22.(10分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据等差数列公式直接...