福建省惠安一中等2024届高考考前提分数学仿真卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在展开式中的常数项为A.1B.2C.3D.72.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A.B.C.D.3.已知A.2(i为虚数单位,),则ab等于()B.-2C.D.4.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.5.记递增数列的前项和为.若,,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则()A.B.C.D.6.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为()A.B.C.2D.47.已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为()A.B.C.D.8.已知若(1-ai)(3+2i)为纯虚数,则a的值为()A.B.C.D.9.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是()A.B.C.D.10.已知复数满足,则()A.B.2C.4D.311.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2kB.4kC.4D.212.在原点附近的部分图象大概是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是一个算法的伪代码,运行后输出的值为___________.14.有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有______种;______;15.已知三棱锥的四个顶点都在球的球面上,,则球的距离的最小值为________.的表面积为__________.,则称是“极差16.在平面直角坐标系中,曲线上任意一点到直线.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记无穷数列的前项中最大值为,最小值为,令数列”.,求的前项和;(1)若(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.18.(12分)如图,在四棱柱中,底面为菱形,(1)证明:平面平面;(2)若,是等边三角形,求二面角的余弦值.19.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.20.(12分)如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.(1)求的值;(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.21.(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.22.(10分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;上,点为坐标原点,求的取值范围.(2)若点在圆参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。2、A【解析】先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.,【详解】在复平面内对应的点关于虚轴对称,且复数因为复数所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.3、A【解析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.【详解】,...