福建省泉州市德化一中2023-2024学年高三下学期联合考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增B.函数的周期是C.函数的图象关于点对称D.函数在上最大值是13.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6),内的概率为()(附:若随机变量ξ服从正态分布,则.)A.4.56%B.13.59%C.27.18%D.31.74%4.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种B.18种C.24种D.64种5.若复数满足,则()A.B.C.2D.6.函数在上单调递减的充要条件是()A.B.C.D.7.已知平面向量,,满足:,,则的最小值为()C.7D.8A.5B.68.复数(i为虚数单位)的共轭复数是A.1+iB.1−iC.−1+iD.−1−i9.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为()A.B.C.D.10.已知等差数列的前n项和为,,则A.3B.4C.5D.611.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A.B.C.D.12.的展开式中有理项有()A.项B.项C.项D.项二、填空题:本题共4小题,每小题5分,共20分。13.若函数为偶函数,则________.14.已知等比数列的各项均为正数,,则的值为________.15.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.16.如图,在等腰三角形中,已知,,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;的余弦值.(2)若,求二面角18.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.19.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.20.(12分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;(2)当为中点时,求二面角21.(12分)如图(1)五边形的余弦值.中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.(1)求证:平面平面...