福建省泉州市惠安县第十六中学2023-2024学年高三第三次模拟考试数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数x,y满足,则的最小值等于()A.B.C.D.2.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.3.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为A.B.C.D.4.函数,,的部分图象如图所示,则函数表达式为()A.B.C.D.5.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种B.44种C.48种D.54种6.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A.B.C.D.7.已知集合,,若,则()A.或B.或C.或D.或8.已知正项等比数列满足,若存在两项,,使得,则的最小值为().A.16B.C.5D.49.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:①②③④点为函数的一个对称中心其中所有正确结论的编号是()A.①②③B.①③④C.①②④D.②③④10.命题“A.”的否定是()C.B.D.11.已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的D.方程为()A.B.C.12.设等比数列的前项和为,则“”是“”的()的解集为____________.A.充分不必要B.必要不充分C.充要D.既不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。13.(5分)已知函数,则不等式14.已知点是双曲线渐近线上的一点,则双曲线的离心率为_______15.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.16.若在上单调递减,则的取值范围是_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,且.(1)求的最小值;(2)证明:.18.(12分)设数列的前n项和满足,,,(1)证明:数列是等差数列,并求其通项公式﹔(2)设,求证:.19.(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.20.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.21.(12分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,,点为射线与曲线的交点,求点的极径.22.(10分)已知数列和满足,,,,.,若对,恒成立,求正整数的值.(Ⅰ)求与;(Ⅱ)记数列的前项和为,且参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,,去绝对值,根据余弦函数的性质即可求出.【详解】,,因为实数,满足设,,恒成立,,故则的最小值等于.故选:.【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.2、D【解析】根据三视图判断出几何体是由一个三棱锥和一个...