福建省泉州市晋江市南侨中学2024年高三下学期联考数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为()A.B.C.D.2.已知是过抛物线焦点的弦,是原点,则()A.-2B.-4C.3D.-33.对于任意,函数满足,且当时,函数.若,则大小关系是()A.B.C.D.4.函数的图象可能是下列哪一个?()A.B.C.D.5.已知函数满足,且,则不等式的解集为()A.C.D.B.6.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为B.C.的共轭复数为D.为纯虚数7.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A.,B.存在点,使得平面平面C.平面D.三棱锥的体积为定值8.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A.B.C.D.9.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为()A.B.C.D.10.设是虚数单位,复数()A.B.C.D.11.已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,,,,则B.若,,,则C.若,,,则D.若,,,则12.若表示不超过的最大整数(如,,),已知,,,则()A.2B.5C.7D.8,则异面直线与所成角的余弦值为()二、填空题:本题共4小题,每小题5分,共20分。13.在长方体中,A.B.C.D.14.的展开式中的系数为__________(用具体数据作答).15.已知双曲线C:()的左、右焦点为,,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为______.16.如图,在长方体中,,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值..18.(12分)已知函数(,),(Ⅰ)讨论的单调性;(Ⅱ)若对任意的,恒成立,求实数的取值范围.19.(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;上,点为坐标原点,求的取值范围.(2)若点在圆20.(12分)设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.(1)求p的值;(2)求证:数列{an}为等比数列;(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.21.(12分)已知,.(1)当时,证明:;(2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.22.(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点,直线l与曲线C交于不同的两点A、B,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.【详解】,将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为,再向右平移个单位长度,所得函数的解析式为,,可得函数图象的一个对称中心为,故选D.【点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的...