福建省漳平市一中2024届高考数学四模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上单调递减,且是偶函数,若,则的取值范围是()B.(﹣∞,1)∪(2,+∞)A.(2,+∞)D.(﹣∞,1)C.(1,2)2.已知集合M={y|y=,x>0},N={x|y=lg(2x-)},则M∩N为()A.(1,+∞)B.(1,2)C.[2,+∞)D.[1,+∞)3.记等差数列的公差为,前项和为.若,,则()A.B.C.D.4.已知是等差数列的前项和,,,则()A.85B.C.35D.5.已知集合,,则()A.B.C.或D.6.已知三棱锥P﹣ABC的顶点都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,则球O的表面积为()A.B.C.D.7.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0B.1C.2D.38.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为()A.B.C.D.9.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.B.C.D.110.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A.B.C.3D.511.直线与圆的位置关系是()A.相交12.已知集合B.相切C.相离D.相交或相切A,则集合()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________.14.(5分)已知为实数,向量,,且,则____________.15.在平行四边形中,已知,,,若,,则____________.16.过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.18.(12分)如图,在四棱锥中,,,,底面为正方形,、分别为、的中点.(1)求证:平面;所成角的正弦值.(2)求直线与平面(其中19.(12分)设函数),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.20.(12分)已知函数,其中,为自然对数的底数.(1)当时,证明:对;(2)若函数在上存在极值,求实数的取值范围。21.(12分)已知函数,曲线在点处的切线方程为.(1)求,的值;(2)证明函数存在唯一的极大值点,且.22.(10分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中,若的值最大,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。满足是偶函数,则函数的图像关于直线对称,【详解】根据题意,函数若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于...