福建省福州市平潭县新世纪学校2024届高考压轴卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,,则的值为()A.B.C.D.2.已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为()A.B.C.D.3.设复数满足,则()A.1B.-1C.D.4.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12B.16C.20D.85.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()A.B.C.D.6.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()A.2或B.2或C.或D.或7.已知中,,则()A.1B.C.D.8.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是()A.若m⊥α,n//α,则m⊥nB.若m//α,n//α,则m//nC.若l⊥α,l//β,则α⊥βD.若α//β,lβ,且l//α,则l//β9.若直线不平行于平面,且,则()A.内所有直线与异面B.内只存在有限条直线与共面C.内存在唯一的直线与平行D.内存在无数条直线与相交10.已知函数,若,则的取值范围是()A.B.C.D.11.已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为()A.B.C.D.112.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为()A.20B.30C.50D.60__________.二、填空题:本题共4小题,每小题5分,共20分。13.记为数列的前项和,若,则14.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.15.已知的终边过点,若,则__________.16.将2个相同的红球和2个相同的黑球全部放入甲、乙、丙、丁四个盒子里,其中甲、乙盒子均最多可放入2个球,丙、丁盒子均最多可放入1个球,且不同颜色的球不能放入同一个盒子里,共有________种不同的放法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.18.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原.点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.19.(12分)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.20.(12分)设都是正数,且,.求证:.21.(12分)已知函数,.(1)若,,求实数的值.(2)若,,求正实数的取值范围.22.(10分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有...