福建省长泰名校2024年高考临考冲刺数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若函数的所有零点依次记为,且,则()A.B.C.D.2.已知函数为奇函数,且,则()A.2B.5C.1D.33.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★,◆◆,则(◆2020)(2020★2018)的值为()A.B.C.D.4.已知是虚数单位,则复数()A.B.C.2D.5.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则()A.,B.,C.,D.,6.已知函数在区间有三个零点,,,且,若,则的最小正周期为()A.B.C.D.,,则输出的()7.执行如图所示的程序框图,若输入A.4B.5C.6D.78.已知若(1-ai)(3+2i)为纯虚数,则a的值为()A.B.C.D.9.函数的一个零点在区间内,则实数a的取值范围是()A.10.已知椭圆B.C.D.的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A.B.C.D.11.若函数f(x)=a2x-4(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]12.已知,则不等式的解集是()A.B.C.D.(为常数),若二、填空题:本题共4小题,每小题5分,共20分。13.设为定义在上的偶函数,当时,,则实数的值为______.的各项系数之和为32,则展开式中含项的系数为______.14.已知多项式15.不等式对于定义域内的任意恒成立,则的取值范围为__________.16.已知单位向量的夹角为,则=_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.18.(12分)如图1,四边形为直角梯形,,,,,,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面;(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.19.(12分)已知函数,.(1)当时,求不等式的解集;(2)若函数的图象与轴恰好围成一个直角三角形,求的值.20.(12分)设为实数,在极坐标系中,已知圆()与直线相切,求的值.21.(12分)已知点,若点满足.(Ⅰ)求点的轨迹方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.22.(10分)中的内角,,的对边分别是,,,若,.(1)求;(2)若,点为边上一点,且,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.2、B【解析】由函数为奇函数,则有,代入已知即可求得.,【详解】.故选:.【点睛】本题考查奇偶...