绥化市重点中学2023-2024学年高三六校第一次联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知.给出下列判断:①若,且,则;②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;③若在上恰有7个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为()A.1B.2C.3D.42.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1B.1C.2.9D.2.8的概率为()3.已知整数满足,记点的坐标为,则点满足A.B.C.D.4.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A.B.C.D.5.若变量,满足,则的最大值为()A.3B.2C.D.106.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是()A.B.C.D.7.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A.B.C.D.8.已知直三棱柱中,,,,则异面直线与所成的角的正弦值为().A.B.C.D.9.若的展开式中的系数之和为,则实数的值为()A.B.C.D.110.已知集合,,则=()A.B.C.D.11.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3B.6C.9D.1212.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为()A.B.C.D.,则______,二、填空题:本题共4小题,每小题5分,共20分。13.设等差数列的前项和为,若,的最大值是______.14.的展开式中二项式系数最大的项的系数为_________(用数字作答).15.(5分)已知,且,则的值是____________.16.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)证明:当时,;(2)若函数有三个零点,求实数的取值范围.18.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.19.(12分)已知函数.(1)若在处取得极值,求的值;(2)求在区间上的最小值;(3)在(1)的条件下,若,求证:当时,恒有成立.20.(12分)已知多面体中,、均垂直于平面,,,,是的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.21.(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为与圆C的交点为O、P,与直线l的交点为Q,极轴建立极坐标系.,射线(1)求圆C的极坐标方程;(2)直线l的极坐标方程是求线段的长.,.22.(10分)已知函数(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,,,使得,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.,所以周期.【详解】因为对于①,因为,所以,即,故①错误;对于②,函数的图象向右平移个单位长度...