茂名市2023-2024学年高考考前提分数学仿真卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A.B.C.D.2.设集合、是全集的两个子集,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则()A.B.C.D.4.已知函数,若,则的值等于()A.B.C.D.5.双曲线的离心率为,则其渐近线方程为A.B.C.D.6.已知集合,,,则集合()A.B.C.D.7.已知集合A={xx<1},B={x},则A.B.C.D.8.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60B.7月份的利润最大C.这12个月利润的中位数与众数均为30D.这一年的总利润超过400万元9.的展开式中有理项有()A.项B.项C.项D.项10.已知(为实数),则关于的不等式为定义在上的奇函数,若当时,的解集是()A.B.C.D.11.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()A.B.C.D.12.已知集合A={﹣2,﹣1,0,1,2},B={xx2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{0,1,2}二、填空题:本题共4小题,每小题5分,共20分。13.已知全集,,则________.14.在棱长为的正方体中,是正方形的中心,为的中点,过的平面与直线垂直,则平面截正方体所得的截面面积为______.15.一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_________.16.已知函数,则曲线在处的切线斜率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。五所高校中17.(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从任选2所.高校的概率;(1)求甲、乙、丙三名同学都选(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.的分布列及数学期望.(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量18.(12分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.19.(12分)在中,,是边上一点,且,.(1)求的长;的长.(2)若的面积为14,求20.(12分)已知函数.(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围.21.(12分)已知△ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面积.22.(10分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点.圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E.(1)求曲线E的方程;(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示...