电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

西藏林芝地区二高2024届高三第二次联考数学试卷含解析.doc

西藏林芝地区二高2024届高三第二次联考数学试卷含解析.doc_第1页
1/24
西藏林芝地区二高2024届高三第二次联考数学试卷含解析.doc_第2页
2/24
西藏林芝地区二高2024届高三第二次联考数学试卷含解析.doc_第3页
3/24
西藏林芝地区二高2024届高三第二次联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A.B.C.D.2.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A.B.C.D.3.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:①若,,,则;②若,,则;③若,,,则;④若,,,则其中正确的是()A.①②B.③④C.①④D.②④(O为坐标原点),设4.在复平面内,复数(,)对应向量,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A.B.4C.D.165.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A.B.C.D.的最大值为()6.若平面向量,满足,则A.B.C.,D.7.已知函数,且在上是单调函数,则下列说法正确的是()A.B.C.函数在上单调递减D.函数的图像关于点对称8.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.EB.FC.G,且D.H9.已知平面平面是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A.B.16C.D.10.在等差数列中,,,若(),则数列的最大值是()A.B.C.1D.3相继出世,其功能也是五花八门.某大学为11.近年来,随着网络的普及和智能手机的更新换代,各种方便的了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A.B.C.D.12.已知非零向量满足,若夹角的余弦值为,且,则实数的值为()A.B.C.或D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线方程是_________.14.已知(且)有最小值,且最小值不小于1,则的取值范围为__________.15.如图梯形为直角梯形,,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_____________16.如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。,是与的等比中项.17.(12分)已知公差不为零的等差数列的前n项和为,(1)求;(2)设数列满足,,求数列的通项公式.18.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;时,求直线l的方程.(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当19.(12分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.20.(12分)已知数列,,数列满足,n.(1)若,,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立.①当数列为等差数列时,求证:数列,的公差相等;②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.21.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

西藏林芝地区二高2024届高三第二次联考数学试卷含解析.doc

您可能关注的文档

确认删除?