电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

贵州省北京师范大学贵阳附中2023-2024学年高三六校第一次联考数学试卷含解析.doc

贵州省北京师范大学贵阳附中2023-2024学年高三六校第一次联考数学试卷含解析.doc_第1页
1/25
贵州省北京师范大学贵阳附中2023-2024学年高三六校第一次联考数学试卷含解析.doc_第2页
2/25
贵州省北京师范大学贵阳附中2023-2024学年高三六校第一次联考数学试卷含解析.doc_第3页
3/25
贵州省北京师范大学贵阳附中2023-2024学年高三六校第一次联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是()A.B.C.D.2.已知复数A.,其中,,是虚数单位,则()3.函数B.C.D.的单调递增区间为()的部分图象如图所示,则A.B.C.D.4.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是()A.CPI一篮子商品中所占权重最大的是居住B.CPI一篮子商品中吃穿住所占权重超过50%C.猪肉在CPI一篮子商品中所占权重约为2.5%D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%5.已知为虚数单位,若复数,,则A.B.C.D.6.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()A.B.C.D.7.偶函数关于点对称,当时,,求()D.A.B.C.,8.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,若,则()A.2020B.4038C.4039D.40409.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是()发芽所需天数1234567种子数43352210A.2B.3C.3.5D.410.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A.B.C.D.11.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()A.B.C.D.中,满足,且12.如图,在平面四边形体积的最大值为(),沿着把折起,使点到达点的位置,且使,则三棱锥A.12B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.等差数列(公差不为0),其中,,成等比数列,则这个等比数列的公比为_____.14.已知函数,且,,使得,则实数m的取值范围是______.15.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.16.点P是△ABC所在平面内一点且在△ABC内任取一点,则此点取自△PBC内的概率是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.(1)求曲线C的方程;(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.18.(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(2)若直线经过点,求直线被曲线截得的线段的长.19.(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.两点,点的坐标为,直线与轴分别交于两点,(Ⅰ)求点的轨迹的方程;(Ⅱ)过点作直线与曲线交于求证:线段的中点为定点,并求出面积的最大值.20.(12分)如图,在四棱锥中,底面为菱形,为正三角形,平面平面分别是的中点.(1)证明:平面的余弦值...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

贵州省北京师范大学贵阳附中2023-2024学年高三六校第一次联考数学试卷含解析.doc

您可能关注的文档

确认删除?
0.0385s