贵州省都匀市第一中学2024年高三考前热身数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A.B.C.lD.12.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点MD.4的纵坐标为1,则p=()A.1B.C.23.设函数,当时,,则()A.B.C.1D.4.已知函数,若恒成立,则满足条件的的个数为()A.0D.35.函数B.1C.2图像可能是()A.B.C.D.6.已知整数满足,记点的坐标为,则点满足的概率为()A.B.C.D.7.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A.B.C.D.8.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.9.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()A.B.,那么它的离心率为()C.D.10.双曲线的一条渐近线方程为A.B.C.D.,设函数,则下列关于函数11.已知向量,的性质的描述正确的是对称B.关于点对称A.关于直线C.周期为D.在上是增函数12.已知等比数列满足,,等差数列中,为数列的前项和,则()A.36B.72C.D.二、填空题:本题共4小题,每小题5分,共20分。13.设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则______________.14.某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为____________.15.两光滑的曲线相切,那么它们在公共点处的切线方向相同.如图所示,一列圆(an>0,rn>0,n=1,2…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=___,rn=______16.已知数列的各项均为正数,满足,.,若是等比数列,,各项均为数列的通项公式_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且满足正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和18.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.(1)求抛物线的方程;(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.19.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的前n项和为.20.(12分)在极坐标系中,已知曲线,.(1)求曲线、的直角坐标方程,并判断两曲线的形状;(2)若曲线、交于、两点,求两交点间的距离.21.(12分)已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.22.(10分)设函数.(I)求的最小正周期;(II)若且,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.2、C【解析】设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.【详解】由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),∴y1+y2=p,又线段AB的中点M的纵...