辽宁省丹东四校协作体2023-2024学年高考数学考前最后一卷预测卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数满足,在复平面内对应的点的坐标为则()A.B.C.D.2.若,满足约束条件,则的最大值是()A.B.C.13D.3.在中,,,,则在方向上的投影是()A.4B.3C.-4D.-34.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A.B.C.D.5.已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是()A.B.C.D.6.关于函数在区间的单调性,下列叙述正确的是()A.单调递增B.单调递减C.先递减后递增D.先递增后递减7.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A.B.C.D.8.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个B.个C.个D.个9.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A.B.C.D.10.若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是()A.B.C.D.11.的展开式中的一次项系数为()A.B.C.D.12.为得到的图象,只需要将的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位二、填空题:本题共4小题,每小题5分,共20分。13.已知复数(为虚数单位)为纯虚数,则实数的值为_____.14.已知函数在点处的切线经过原点,函数的最小值为,则________.15.某校高二(4)班统计全班同学中午在食堂用餐时间,有7人用时为6分钟,有14人用时7分钟,有15人用时为8分钟,还有4人用时为10分钟,则高二(4)班全体同学用餐平均用时为____分钟.16.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数的图象与轴有且只有一个公共点,求实数的取值范围;(2)若对任意成立,求实数的取值范围.18.(12分)在平面直角坐标系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.19.(12分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.(1)写出直线的普通方程与曲线的直角坐标方程;(2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.20.(12分)已知数列的前n项和为,且n、、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.21.(12分)已知数列,其前项和为,若对于任意,,且,都有.,且等差数列的公差为,存在正整数,使得,(1)求证:数列是等差数列(2)若数列满足求的最小值.,设的最小值为m.22.(10分)已知函数(1)求m的值;,?并说明理由.(2)是否存在实数a,b,使得参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据共轭复数定义及复数模的求法,代入化简即可求解.【详解】在复平面内对应的点的坐标为,则,, ,代入可得,解得.故选:B.【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,...