辽宁省凤城市2024年高三下学期一模考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设a,b,c为正数,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不修要条件2.设全集为R,集合,,则A.B.C.D.3.已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为()B.20l9C.2018D.2017A.20204.已知函数若对区间内的任意实数,都有,则实数的取值范围是()A.B.C.D.5.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()C.10D.11A.8B.9,则()6.已知菱形的边长为2,A.4B.6C.D.7.若集合,则=()A.B.C.D.8.已知集合,集合,则()A.B.C.D.9.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A.B.C.D.10.如图,在平行四边形中,对角线与交于点,且,则()A.B.C.D.11.函数数向右平移的部分图像如图所示,若,点的坐标为,若将函个单位后函数图像关于轴对称,则的最小值为()A.B.C.D.的坐标满足方程,点12.在直角坐标平面上,点的坐标满足方程则的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如果函数(,且,)在区间上单调递减,那么的最大值为__________.14.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是_____.15.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.16.将函数的图象向右平移个单位长度后得到函数的图象,则函数的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.获奖女生男生总计不获奖总计附表及公式:其中,.18.(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.19.(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值.20.(12分)已知,均为正项数列,其前项和分别为,,且,,,当,时,,.(1)求数列,的通项公式;(2)设,求数列的前项和.21.(12分)在平面四边形(图①)中,与均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.(1)求证:平面⊥平面;(2)求二面角的余弦值.22.(10分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【详解】解:,,为正数,当,,时,满足,但不成立,即充分性不成立,若,则,即,即,即,成立,即必要性成立,则“”是“”的必要不充分条件,故选:.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键.2、B【解析】分析:由题意首...