辽宁省沈阳市名校2023-2024学年高考仿真模拟数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,则输出的()A.2B.3C.D.2.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A.B.C.D.3.已知数列为等差数列,为其前项和,,则()A.7B.14C.28D.844.设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是()A.B.C.D.5.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A.B.C.D.6.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是()A.B.C.D.7.设是虚数单位,则“复数为纯虚数”是“”的()A.充要条件B.必要不充分条件C.既不充分也不必要条件D.充分不必要条件8.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3B.3.4C.3.8D.4().9.已知复数满足,其中为虚数单位,则A.B.C.D.10.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是()A.B.C.D.,则数列11.数列满足:前项的和为A.B.C.D.12.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.14.的展开式中的常数项为______.15.已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_______.16.已知是等比数列,且,,则__________,的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(本小题满分12分)已知椭圆C:的离心率为,连接椭圆四个顶点形成的四边形面积为4.O为坐标原点,(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M,N,设P为椭圆上一点,且当时,求t的取值范围.18.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.19.(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线:,直线的参数方程为(为参数).直线与曲线交于,两点.(I)写出曲线的直角坐标方程和直线的普通方程(不要求具体过程);(II)设,若,,成等比数列,求的值.20.(12分)的内角,,的对边分别为,,,其面积记为,满足.(1)求;(2)若,求的值.21.(12分)已知函数.(1)讨论的单调性;(2)曲线在点处的切线斜率为.(i)求;(ii)若,求整数的最大值.22.(10分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:...