辽宁省阜新市二中2024年高考数学倒计时模拟卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数满足,在复平面内对应的点为,则不可能为()A.B.C.D.2.若集合,,则()A.B.C.D.3.某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有()种A.B.C.D.4.已知函数,,若存在实数,使成立,则正数的取值范围为()B.A.C.D.5.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()上A.至少有一个样本点落在回归直线B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有的解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关6.已知向量,且,则等于()A.4B.3C.2D.17.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3B.4C.5D.68.设正项等差数列的前项和为,且满足,则的最小值为A.8B.16C.24D.369.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A.B.C.D.10.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A.B.C.D.11.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8B.9C.10D.1112.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141432341342234142243331112322342241244431233214344142134412由此可以估计,恰好第三次就停止摸球的概率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,所有项的系数的和为________14.设全集,集合,,则集合______.,则的取值范围是_____.15.在中,角、、所对的边分别为、、,若,16.已知是等比数列,若,,且∥,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;所成的角为,求平面(2)若直线与平面与平面所成锐二面角的余弦值.18.(12分)设为实数,在极坐标系中,已知圆()与直线相切,求的值.19.(12分)已知函数,曲线在点处的切线方程为.(1)求,的值;(2)证明函数存在唯一的极大值点,且.20.(12分)已知四棱锥中,底面为等腰梯形,,,,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.21.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.22.(10分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:满意不满意男4040女8040(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?(2)为答谢顾客...