重庆江津长寿綦江等七校联盟2024年高三3月份模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知角的终边经过点P(),则sin()=A.B.C.D.2.已知是第二象限的角,,则()A.B.C.D.3.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A.B.C.D.54.中,点在边上,平分,若,,,,则()A.B.C.D.5.对于任意,函数满足,且当时,函数.若,则大小关系是()A.B.C.D.6.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为()A.B.C.D.7.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.8.函数且的图象是()A.B.C.D.9.在直角中,,,,若,则()A.D.B.C.10.在中,已知,,,为线段上的一点,且,则的最小值为()A.B.C.D.11.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面,,两两互相垂直,点,点到,的距离都是3,点是上的动点,满足到的距离与到点的距离相等,则点的轨迹上的点到的距离的最小值是()A.B.3C.D.12.已知为实数集,,,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,,且,则的最小值为___________.14.设满足约束条件,则目标函数的最小值为_.15.集合,,则_____.16.二项式的展开式中项的系数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,将曲线(为参数)通过伸缩变换,得到曲线,设直线(为参数)与曲线相交于不同两点,.(1)若,求线段的中点的坐标;(2)设点,若,求直线的斜率.18.(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:19.(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、、(),求证:.20.(12分)已知函数,(1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围.21.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)如果对所有的≥0,都有≤,求的最小值;(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:.22.(10分)已知x,y,z均为正数.(1)若xy<1,证明:x+z⋅y+z>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意可得三角函数的定义可知:,,则:本题选择A选项.,再利用二倍角的正弦公式代入求解即可.2、D【解析】利用诱导公式和同角三角函数的基本关系求出【详解】因为,由诱导公式可得,,即,因为,所以,由二倍角的正弦公式可得,,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.3、...