电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

镇海中学2023-2024学年高考全国统考预测密卷数学试卷含解析.doc

镇海中学2023-2024学年高考全国统考预测密卷数学试卷含解析.doc_第1页
1/22
镇海中学2023-2024学年高考全国统考预测密卷数学试卷含解析.doc_第2页
2/22
镇海中学2023-2024学年高考全国统考预测密卷数学试卷含解析.doc_第3页
3/22
镇海中学2023-2024学年高考全国统考预测密卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知各项都为正的等差数列中,,若,,成等比数列,则()A.B.C.D.2.若直线经过抛物线的焦点,则()A.B.C.2D.3.如图,在棱长为4的正方体中,E,F,G分别为棱AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为()A.B.C.D.与抛物线交于不同两点,,直线与抛物线交于4.已知抛物线和点,直线另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③B.①②C.①③D.②③5.已知为等腰直角三角形,,,为所在平面内一点,且,则()A.B.C.D.6.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是()A.B.C.D.7.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A.B.C.D.8.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A.B.1C.D.29.已知函数,若恒成立,则满足条件的的个数为()A.0B.1C.2D.310.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A.B.40C.16D.11.已知函数的图象向左平移个单位后得到函数的图象,则的最小值为()D.A.B.C.12.复数的()D.第四象限A.第一象限B.第二象限C.第三象限__________.二、填空题:本题共4小题,每小题5分,共20分。13.已知为偶函数,当时,,则14.设第一象限内的点(x,y)满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为40,则+的最小值为_____.15.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.16.已知,,其中,为正的常数,且,则的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列和等比数列满足:(I)求数列和的通项公式;(II)求数列的前项和.18.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.19.(12分)设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.,已知(1)证明:直线过定点,并求出该定点的坐标;(2)是否存在常数,满足?并说明理由.20.(12分)设数列是等比数列,,(1)求数列的首项和公比;(2)求数列的通项公式.21.(12分)为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,统计这些答卷的得分(满分:100分)制出的频率分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).(1)请利用正态分布的知识求;(2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:②每次获赠的随机话费和对应的概率为:获赠的随机话费(单位:元)概率市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?附:①;②若;则,,.22.(10分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.参考答案一、选择题:本题共12小题...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

镇海中学2023-2024学年高考全国统考预测密卷数学试卷含解析.doc

您可能关注的文档

确认删除?