陕西省西安市名校2024年高考冲刺模拟数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为()A.B.C.D.2.函数的对称轴不可能为()A.B.C.D.3.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是()A.B.C.D.4.设等比数列的前项和为,则“”是“”的()A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.若关于的不等式有正整数解,则实数的最小值为()A.B.C.D.6.复数的模为().A.B.1C.2D.7.已知全集,集合,则=()A.C.B.D.8.已知数列的通项公式是(),则D.78A.0B.55C.66有三个零点,,,且9.已知函数在区间,若,则的最小正周期为()A.B.C.D.10.已知等比数列满足,,则()A.B.C.D.11.已知等差数列的前n项和为,且,,若(,且),则i的D.取值集合是()A.B.C.12.设,点,,,,设对一切都有不等式成立,则正整数的最小值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知在等差数列中,,,前n项和为,则________.14.设变量,满足约束条件,则目标函数的最小值为______.15.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)16.某几何体的三视图如图所示(单位:),则该几何体的表面积是______,体积是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某社区服务中心计划按月订购一种酸奶,每天进货量相同,进货成本每瓶5元,售价每瓶7元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:摄氏度℃)有关.如果最高气温不低于25,需求量为600瓶;如果最高气温位于区间,需求量为500瓶;如果最高气温低于20,需求量为300瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数414362763以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为(单位:瓶)时,的数学期望的取值范围?18.(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.19.(12分)已知函数f(x)ax﹣lnx(a∈R).(1)若a=2时,求函数f(x)的单调区间;(2)设g(x)=f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.20.(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.21.(12分)数列的前项和为,且.数列满足,其前项和为.(1)求数列与的通项公式;(2)设,求数列的前项和.22.(10分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.【详解】解:...