陕西省西安市长安区第五中学2024年高考仿真卷数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线上任意一点处的切线斜率的最小值为()A.3B.2C.D.1,则()2.已知向量与向量平行,,且A.B.C.D.3.若复数是纯虚数,则()A.3B.5C.D.4.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2B.C.D.5.已知满足,则的取值范围为()A.B.C.D.6.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A.B.C.D.7.已知函数是()的零点为m,若存在实数n使且,则实数a的取值范围A.B.C.D.8.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限9.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为()尺.A.B.C.D.10.已知三棱柱()A.B.C.D.11.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为()A.B.C.2D.412.函数(或)的图象大致是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若满足约束条件,则的最大值为__________.14.已知向量,,,若,则______.15.已知非零向量的夹角为,且,则______.16.已知(且)有最小值,且最小值不小于1,则的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.18.(12分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围..(为参数),圆的方程为19.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:20.(12分)在平面直角坐标系中,已知直线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求和的极坐标方程;(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.21.(12分)设不等式的解集为M,.(1)证明:;(2)比较与的大小,并说明理由.22.(10分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(2)若直线经过点,求直线被曲线截得的线段的长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.2、B【解析】设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【详解】设,且,,由得,即,①,由,②,所以,解得,因此,.故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.3、C【解析】先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题....