陕西省西安市高新一中、交大附中2024届高考冲刺数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知非零向量、,若且,则向量在向量方向上的投影为()A.B.C.D.2.某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,,,,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为()B.9年C.10年D.11年A.8年3.已知函数,若,且,则的取值范围为()A.B.C.D.4.已知函数A.2为奇函数,且,则()5.已知复数D.3A.B.5C.16.为得到函数,则的虚部是()B.C.D.1的图像,只需将函数的图像()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位7.已知是偶函数,在上单调递减,,则的解集是A.B.C.D.8.复数,是虚数单位,则下列结论正确的是A.B.的共轭复数为C.的实部与虚部之和为1D.在复平面内的对应点位于第一象限9.已知等差数列满足,公差,且成等比数列,则A.1B.2C.3D.410.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()A.B.C.D.11.如图是一个几何体的三视图,则该几何体的体积为()A.B.C.D.12.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是()A.B.C.10D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.14.如图,在平行四边形中,,,则的值为_____.15.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.16.在的展开式中,的系数等于__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.18.(12分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).19.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2+y2=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1和C2的极坐标方程:(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求AB的值.20.(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.21.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污染18272510天数614(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.22.(10分)如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】两边平方,求出的值,进而可求得向量在向量方向设非零向量与的夹角为,在等式上的投影为,即可得解.【详解】,由得,整理得,,解得,因此,向量在向量方向上的投影为....