黑龙江省佳木斯市重点中学2023-2024学年高考考前模拟数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()D.1095A.1194B.1695C.3112.集合中含有的元素个数为()A.4B.6C.8D.123.已知,,且是的充分不必要条件,则的取值范围是()A.B.C.D.4.已知双曲线C:1(a>0,b>0)的焦距为8,一条渐近线方程为,则C为()A.B.C.D.5.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A.B.C.D.6.设A.则以线段为直径的圆的方程是()C.B.7.已知函数D.,则不等式的解集为()A.B.C.D.8.已知等差数列中,,则()A.20B.18C.16D.149.集合,,则=()A.B.C.D.10.已知数列是公差为的等差数列,且成等比数列,则()D.1A.4B.3C.211.已知菱形的边长为2,,则()D.A.4B.6C.12.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.在三棱锥中,三条侧棱两两垂直,,则三棱锥外接球的表面积的最小值为________.14.已知向量,,且,则________.15.若函数的图像与直线的三个相邻交点的横坐标分别是,,,则实数的值为________.16.(5分)已知,且,则的值是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.18.(12分)已知在中,角,,的对边分别为,,,的面积为.(1)求证:;(2)若,求的值.19.(12分)已知,,.(1)求的最小值;(2)若对任意,都有,求实数的取值范围.20.(12分)已知函数.(1)当时,求的单调区间.(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.(3)已知分别在,处取得极值,求证:.21.(12分)在中,角所对的边分别是,且.(1)求角的大小;(2)若,求边长.22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求MN的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.【详解】时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.故选:D.的前35项中【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列有多少项是中的,又有多少项是中的.2、B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B3、D【解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.可化简为,,【详解】由题意知:所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.4、A【解析】由题意求得c与的值,结合隐含条件列式求得a2,b2,则答案可求.【详解】由题意,2c=8,则c=4,又,且a2+...